Processors API¶
History processors for managing conversation context. These are re-exported from summarization-pydantic-ai.
create_summarization_processor¶
Factory function for creating a summarization processor with sensible defaults.
Signature¶
def create_summarization_processor(
model: str = "openai:gpt-4.1",
trigger: ContextSize | list[ContextSize] | None = ("tokens", 170000),
keep: ContextSize = ("messages", 20),
max_input_tokens: int | None = None,
token_counter: TokenCounter | None = None,
summary_prompt: str | None = None,
) -> SummarizationProcessor
Parameters¶
| Parameter | Type | Default | Description |
|---|---|---|---|
model |
str |
"openai:gpt-4.1" |
Model for generating summaries |
trigger |
ContextSize \| list[ContextSize] \| None |
("tokens", 170000) |
When to trigger summarization |
keep |
ContextSize |
("messages", 20) |
How much context to keep |
max_input_tokens |
int \| None |
None |
Max tokens (required for fraction triggers) |
token_counter |
TokenCounter \| None |
None |
Custom token counting function |
summary_prompt |
str \| None |
None |
Custom summarization prompt |
Returns¶
SummarizationProcessor - Configured processor instance.
Example¶
from pydantic_deep import create_deep_agent, create_summarization_processor
processor = create_summarization_processor(
trigger=("tokens", 100000),
keep=("messages", 20),
)
agent = create_deep_agent(history_processors=[processor])
SummarizationProcessor¶
Dataclass for LLM-based conversation summarization.
Definition¶
@dataclass
class SummarizationProcessor:
model: str
trigger: ContextSize | list[ContextSize] | None = None
keep: ContextSize = ("messages", 20)
token_counter: TokenCounter = count_tokens_approximately
summary_prompt: str = DEFAULT_SUMMARY_PROMPT
max_input_tokens: int | None = None
trim_tokens_to_summarize: int | None = 4000
Attributes¶
| Attribute | Type | Description |
|---|---|---|
model |
str |
Model to use for generating summaries |
trigger |
ContextSize \| list[ContextSize] \| None |
Threshold(s) that trigger summarization |
keep |
ContextSize |
How much context to keep after summarization |
token_counter |
TokenCounter |
Function to count tokens in messages |
summary_prompt |
str |
Prompt template for generating summaries |
max_input_tokens |
int \| None |
Maximum input tokens (required for fraction triggers) |
trim_tokens_to_summarize |
int \| None |
Maximum tokens to include when generating summary |
Methods¶
__call__¶
Process messages and summarize if needed. This is called automatically by pydantic-ai's history processor mechanism.
Example¶
from pydantic_deep import SummarizationProcessor
processor = SummarizationProcessor(
model="openai:gpt-4.1",
trigger=[
("messages", 50),
("tokens", 100000),
],
keep=("messages", 10),
trim_tokens_to_summarize=4000,
)
create_sliding_window_processor¶
Factory function for creating a sliding window processor with sensible defaults.
Signature¶
def create_sliding_window_processor(
trigger: ContextSize | list[ContextSize] | None = ("messages", 100),
keep: ContextSize = ("messages", 50),
max_input_tokens: int | None = None,
token_counter: TokenCounter | None = None,
) -> SlidingWindowProcessor
Parameters¶
| Parameter | Type | Default | Description |
|---|---|---|---|
trigger |
ContextSize \| list[ContextSize] \| None |
("messages", 100) |
When to trigger trimming |
keep |
ContextSize |
("messages", 50) |
How much context to keep |
max_input_tokens |
int \| None |
None |
Max tokens (required for fraction triggers) |
token_counter |
TokenCounter \| None |
None |
Custom token counting function |
Returns¶
SlidingWindowProcessor - Configured processor instance.
Example¶
from pydantic_deep import create_deep_agent, create_sliding_window_processor
processor = create_sliding_window_processor(
trigger=("messages", 100),
keep=("messages", 50),
)
agent = create_deep_agent(history_processors=[processor])
SlidingWindowProcessor¶
Dataclass for zero-cost message trimming without LLM calls.
Definition¶
@dataclass
class SlidingWindowProcessor:
trigger: ContextSize | list[ContextSize] | None = None
keep: ContextSize = ("messages", 50)
token_counter: TokenCounter = count_tokens_approximately
max_input_tokens: int | None = None
Attributes¶
| Attribute | Type | Description |
|---|---|---|
trigger |
ContextSize \| list[ContextSize] \| None |
Threshold(s) that trigger trimming |
keep |
ContextSize |
How much context to keep after trimming |
token_counter |
TokenCounter |
Function to count tokens in messages |
max_input_tokens |
int \| None |
Maximum input tokens (required for fraction triggers) |
Methods¶
__call__¶
Process messages and trim if needed. Note: This is a synchronous method (no LLM calls).
Example¶
from pydantic_deep import SlidingWindowProcessor
processor = SlidingWindowProcessor(
trigger=("tokens", 100000),
keep=("messages", 50),
)
Type Aliases¶
ContextSize¶
ContextFraction = tuple[Literal["fraction"], float]
ContextTokens = tuple[Literal["tokens"], int]
ContextMessages = tuple[Literal["messages"], int]
ContextSize = ContextFraction | ContextTokens | ContextMessages
Specifies context size thresholds:
("messages", N)- Number of messages("tokens", N)- Number of tokens("fraction", F)- Fraction ofmax_input_tokens(0 < F <= 1)
TokenCounter¶
Function type for custom token counting.