Getting Help¶
Documentation¶
This documentation is your primary resource. Use the search bar (press / or s) to find specific topics.
GitHub Issues¶
For bugs, feature requests, or questions:
:fontawesome-brands-github: Open an Issue
Before Opening an Issue¶
- Search existing issues - Your problem may already be reported
- Check the docs - The answer might be here
- Prepare a minimal example - Help us reproduce the issue
Bug Report Template¶
## Description
[Clear description of the bug]
## Steps to Reproduce
1. Create agent with...
2. Call agent.run()...
3. Observe error...
## Expected Behavior
[What you expected to happen]
## Actual Behavior
[What actually happened]
## Environment
- pydantic-deep version: X.X.X
- Python version: 3.XX
- OS: [e.g., macOS 14.0]
Community Resources¶
Pydantic AI¶
pydantic-deep is built on Pydantic AI. Their documentation is an excellent resource:
Pydantic¶
For data validation and type hints:
FAQ¶
How is pydantic-deep different from LangChain?¶
pydantic-deep is built on Pydantic AI, which provides:
- Type-safe agents with Pydantic models
- Simpler, more pythonic API
- Better IDE support and autocomplete
- No complex chain abstractions
Can I use models other than Anthropic?¶
Yes! Pydantic AI supports multiple providers:
# OpenAI
agent = create_deep_agent(model="openai:gpt-4")
# Google
agent = create_deep_agent(model="google:gemini-1.5-pro")
# Anthropic (default)
agent = create_deep_agent(model="openai:gpt-4.1")
How do I run without API calls (for testing)?¶
Use TestModel from Pydantic AI:
Can I use pydantic-deep with async frameworks?¶
Yes! pydantic-deep is fully async-native:
from fastapi import FastAPI
from pydantic_deep import create_deep_agent, DeepAgentDeps, StateBackend
app = FastAPI()
agent = create_deep_agent()
@app.post("/chat")
async def chat(prompt: str):
deps = DeepAgentDeps(backend=StateBackend())
result = await agent.run(prompt, deps=deps)
return {"response": result.output}
How do I persist files between runs?¶
Use FilesystemBackend instead of StateBackend: