Context Management for Pydantic AI¶
Automatic conversation summarization and context management for Pydantic AI agents.
Context Management for Pydantic AI helps your agents handle long conversations without exceeding model context limits. Choose between intelligent LLM summarization or fast sliding window trimming.
-
Intelligent Summarization
LLM-powered compression that preserves key information
-
Sliding Window
Zero-cost message trimming for maximum speed
-
Safe Cutoff
Never breaks tool call/response pairs
-
Flexible Configuration
Message, token, or fraction-based triggers
Available Processors¶
| Processor | LLM Cost | Latency | Context Preservation | Best For |
|---|---|---|---|---|
SummarizationProcessor |
High | High | Intelligent summary | Quality-focused apps |
SlidingWindowProcessor |
Zero | ~0ms | Discards old messages | Speed/cost-focused apps |
Quick Start¶
Intelligent Summarization¶
Uses an LLM to create summaries of older messages:
from pydantic_ai import Agent
from pydantic_ai_summarization import create_summarization_processor
processor = create_summarization_processor(
trigger=("tokens", 100000),
keep=("messages", 20),
)
agent = Agent(
"openai:gpt-4o",
history_processors=[processor],
)
result = await agent.run("Hello!")
Zero-Cost Sliding Window¶
Simply discards old messages — no LLM calls:
from pydantic_ai import Agent
from pydantic_ai_summarization import create_sliding_window_processor
processor = create_sliding_window_processor(
trigger=("messages", 100),
keep=("messages", 50),
)
agent = Agent(
"openai:gpt-4o",
history_processors=[processor],
)
result = await agent.run("Hello!")
Choosing a Processor¶
Use SummarizationProcessor when:
- Context quality is critical
- You need to preserve key information from long conversations
- LLM cost is acceptable for your use case
Use SlidingWindowProcessor when:
- Speed and cost are priorities
- Recent context is most important
- You're running many parallel conversations
- You want deterministic, predictable behavior
Related Projects¶
| Package | Description |
|---|---|
| Pydantic Deep Agents | Full agent framework (uses this library) |
| pydantic-ai-backend | File storage and Docker sandbox |
| pydantic-ai-todo | Task planning toolset |
| subagents-pydantic-ai | Multi-agent orchestration |
| pydantic-ai | The foundation — agent framework by Pydantic |
Next Steps¶
-
Get started with pip or uv
-
Learn how processors work
-
See practical usage patterns
-
Full API documentation