Processor API¶
pydantic_ai_summarization.processor
¶
Summarization history processor for managing conversation context.
DEFAULT_SUMMARY_PROMPT = "<role>\nContext Extraction Assistant\n</role>\n\n<primary_objective>\nExtract the most relevant context from the conversation history below.\n</primary_objective>\n\n<objective_information>\nYou're nearing the token limit and must extract key information. This context will overwrite the conversation history, so include only the most important information.\n</objective_information>\n\n<instructions>\nThe conversation history will be replaced with your extracted context. Extract and record the most important context. Focus on information relevant to the overall goal. Avoid repeating completed actions.\n</instructions>\n\nRead the message history carefully. Think about what is most important to preserve. Extract only essential context.\n\nRespond ONLY with the extracted context. No additional information.\n\n<messages>\nMessages to summarize:\n{messages}\n</messages>"
module-attribute
¶
Default prompt template used for generating summaries.
SummarizationProcessor
dataclass
¶
History processor that summarizes conversation when limits are reached.
This processor monitors message token counts and automatically summarizes older messages when a threshold is reached, preserving recent messages and maintaining context continuity.
Attributes:
| Name | Type | Description |
|---|---|---|
model |
ModelType
|
Model to use for generating summaries. |
trigger |
ContextSize | list[ContextSize] | None
|
Threshold(s) that trigger summarization. |
keep |
ContextSize
|
How much context to keep after summarization. |
token_counter |
TokenCounter
|
Function to count tokens in messages. |
summary_prompt |
str
|
Prompt template for generating summaries. |
max_input_tokens |
int | None
|
Maximum input tokens (required for fraction-based triggers). |
trim_tokens_to_summarize |
int | None
|
Maximum tokens to include when generating summary. |
Example
Source code in src/pydantic_ai_summarization/processor.py
| Python | |
|---|---|
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 | |
model
instance-attribute
¶
Model to use for generating summaries.
Accepts a string model name (e.g., "openai:gpt-4.1"), a pydantic-ai
:class:~pydantic_ai.models.Model instance, or a
:data:~pydantic_ai.models.KnownModelName literal.
trigger = None
class-attribute
instance-attribute
¶
Threshold(s) that trigger summarization.
Examples:
- ("messages", 50) - trigger when 50+ messages
- ("tokens", 100000) - trigger when 100k+ tokens
- ("fraction", 0.8) - trigger at 80% of max tokens (requires max_input_tokens)
keep = ('messages', _DEFAULT_MESSAGES_TO_KEEP)
class-attribute
instance-attribute
¶
How much context to keep after summarization.
Examples:
- ("messages", 20) - keep last 20 messages
- ("tokens", 10000) - keep last 10k tokens worth
token_counter = field(default=count_tokens_approximately)
class-attribute
instance-attribute
¶
Function to count tokens in messages.
summary_prompt = DEFAULT_SUMMARY_PROMPT
class-attribute
instance-attribute
¶
Prompt template for generating summaries.
max_input_tokens = None
class-attribute
instance-attribute
¶
Maximum input tokens for the model (required for fraction-based triggers).
trim_tokens_to_summarize = _DEFAULT_TRIM_TOKEN_LIMIT
class-attribute
instance-attribute
¶
Maximum tokens to include when generating summary. None to skip trimming.
__post_init__()
¶
Validate configuration and set up trigger conditions.
__call__(messages)
async
¶
Process messages and summarize if needed.
This is the main entry point called by pydantic-ai's history processor mechanism.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
messages
|
list[ModelMessage]
|
Current message history. |
required |
Returns:
| Type | Description |
|---|---|
list[ModelMessage]
|
Processed message history, potentially with older messages summarized. |
Source code in src/pydantic_ai_summarization/processor.py
create_summarization_processor(model='openai:gpt-4.1', trigger=('tokens', _DEFAULT_TRIGGER_TOKENS), keep=('messages', _DEFAULT_MESSAGES_TO_KEEP), max_input_tokens=None, token_counter=None, summary_prompt=None)
¶
Create a summarization history processor.
This is a convenience factory function for creating SummarizationProcessor instances with sensible defaults.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model
|
ModelType
|
Model to use for generating summaries. Accepts a string name, a Model instance, or a KnownModelName. Defaults to "openai:gpt-4.1". |
'openai:gpt-4.1'
|
trigger
|
ContextSize | list[ContextSize] | None
|
When to trigger summarization. Can be: - ("messages", N) - trigger when N+ messages - ("tokens", N) - trigger when N+ tokens - ("fraction", F) - trigger at F fraction of max_input_tokens - List of tuples to trigger on any condition Defaults to ("tokens", 170000). |
('tokens', _DEFAULT_TRIGGER_TOKENS)
|
keep
|
ContextSize
|
How much context to keep after summarization. Defaults to ("messages", 20). |
('messages', _DEFAULT_MESSAGES_TO_KEEP)
|
max_input_tokens
|
int | None
|
Maximum input tokens (required for fraction-based triggers). |
None
|
token_counter
|
TokenCounter | None
|
Custom token counting function. Defaults to approximate counter. |
None
|
summary_prompt
|
str | None
|
Custom prompt for summarization. Defaults to built-in prompt. |
None
|
Returns:
| Type | Description |
|---|---|
SummarizationProcessor
|
Configured SummarizationProcessor. |
Example
Source code in src/pydantic_ai_summarization/processor.py
count_tokens_approximately(messages)
¶
Approximate token count based on character length.
This is a simple heuristic: ~4 characters per token on average. For production use, consider using a proper tokenizer like tiktoken.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
messages
|
Sequence[ModelMessage]
|
Sequence of messages to count tokens for. |
required |
Returns:
| Type | Description |
|---|---|
int
|
Approximate token count. |
Example
Source code in src/pydantic_ai_summarization/processor.py
format_messages_for_summary(messages)
¶
Format messages into a readable string for summarization.
This function converts a sequence of ModelMessage objects into a human-readable format suitable for passing to an LLM for summarization.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
messages
|
Sequence[ModelMessage]
|
Sequence of messages to format. |
required |
Returns:
| Type | Description |
|---|---|
str
|
Formatted string representation of the messages. |